|--|

Question Paper Code: 50957

B.E./B.Tech. DEGREE EXAMINATIONS, APRIL/MAY 2024.

Third Semester

Electronics and Communication Engineering

EC 3351 — CONTROL SYSTEMS

(Common to Electronics and Telecommunication Engineering)

(Regulations 2021)

Time: Three hours

Maximum: 100 marks

Answer ALL questions.

PART A — $(10 \times 2 = 20 \text{ marks})$

- 1. What are the properties of signal flow graph?
- 2. List the basic components of block diagram.
- 3. Define peak over shoot.
- 4. A unity feedback system has an open loop transfer function of $G(s) = \frac{12}{(s+1)(s+6)}$. Determine the steady state error for unit step input.
- 5. Define phase margin.
- 6. List the advantages of bode plot.
- 7. Define Relative stability.
- 8. What is centroid of root locus? How the centroid is computed?
- 9. What are the characteristics of lead compensation? when is the lead compensation employed?
- 10. Draw the frequency plot of lag compensator.

11. (a) Determine the transfer functions $X_1(s)/F(s)$ and $X_2(s)/F(s)$ for system shown in figure 1.

Fig. 1

Or

- (b) (i) Derive an expression for the transfer function of armature controlled DC motor system with necessary diagram. (8)
 - (ii) Discuss in details about multivariable control system with suitable diagram. (5)
- 12. (a) (i) Elucidate the analytical design for PI control system. (8)
 - (ii) The damping ratio of the system is 0.75 and the natural frequency of oscillation is 12 rad/sec. Determine peak overshoot and settling time. (5)

Or

- (b) With neat diagram, explain about analog PID controller and derive its output equation. (13)
- 13. (a) The open loop transfer function of the system, $G(s) = \frac{20}{s(3s+1)(4s+1)}$. Sketch the bode plot and obtain the value of gain cross over frequency. (13)

Or

(b) An unity feedback system having an open loop transfer function, $G(s) = \frac{1}{s(s+1)(s+0.5)}$. Sketch the polar plot and determine the value of gain margin and phase margin. (13)

- 14. (a) (i) The open loop transfer function of feedback control system is given by $G(s) = \frac{K}{s(s+2)(s+1)}$. Using Routh criterion, determine the range of K and frequency of oscillation of the system. (8)
 - (ii) Discuss the concept of BIBO stability. (5)

Oı

- (b) The open loop transfer function of unity feedback system is given below. $G(s) = \frac{K}{s(s+2)(s+4)}$. Sketch the root locus plot for the above system and determine the value of K. (13)
- 15. (a) (i) Construct a state model for the system described by the differential equation, $\frac{d^3y}{dt^2} + 6\frac{d^2y}{dt} + 11\frac{dy}{dt} + 6y + u = 0$. Also draw the block diagram representation of the state model. (8)
 - (ii) Discuss the solution of homogeneous state equation. (5)

Or

(b) A discrete time system described by the difference equation, Y(k+2)+5y(k+1)+6y(k)=u(k) and initial conditions y(0)=y(1)=0; T=1s. Determine the state model in canonical form. Also compute the state controllability of the above discrete time system. (13)

PART C — $(1 \times 15 = 15 \text{ marks})$

16. (a) Design a lead compensator for a unity feedback system with open loop transfer function, $G(s) = \frac{K}{s(s+1)(s+5)}$ to satisfy the following specifications

Or

- (i) Velocity error constant, Kv≥50 and
- (ii) Phase margin is ≥ 20 .

- (b) (i) Derive the transfer function of armature controlled DC servo motor system. (7)
 - (ii) Find the transfer function C(s)/R(s) for the signal flow graph shown in figure. (8)

Fig. 2

(15)